
Using PCIUW from a C++ Code

The PCIUW utility may be executed from within a C program code. The functions below describe how to
read, save and write back to the registers. These functions are for Microsoft C++ compilers. The
PCIUW.EXE and necessary DLLs must reside in the directory where this program is executed from.
The necessary steps are:

1- Read all devices
2- Search for the desired device in the CFG file
3- Save the information for the device to a file, by specifying the bus number and the device number in

the save command
4- Write from the file to reload the hardware

The format of the CFG file is described below to allow locating the desired device(s).

A- Description of function calls to read, save and reload devices
    void CTestDlg::OnButtonRun()
           {

/*run the utility to read all devices */
int ReturnCode = 0 ;
ReturnCode=WinExec("pciuw",SW_SHOW);
/*run the utility to show help dialog */
// ReturnCode=WinExec("pciuw /?",SW_SHOW);
/*run the utility to save the device configuration information of the device on BusNo = 1 and
 device No = 0 */
// ReturnCode=WinExec("pciuw /s 1 0",SW_SHOW);
/* Bus number=1 and Device = 0 here are examples, to find the specific of what your device
number is search the CFG file to located your device, using the cfg file description below, after
 you run the utility to read all devices. The device related information may also be located from a
 command line outside of the c program and then used in the code, so long as the system
configuration does not change. */
/*run the utility to load configuration information from the last saved file into the hardware */

// ReturnCode=WinExec("pciuw / w",SW_SHOW);
if(ReturnCode < 31)
AfxMessageBox ("run command failed.");

            }

B- CFG file description
PCIUW program when executed saves its configuration information in “set@@@.cfg” file. This document
describes the format of this file.



FILE FORMAT

Order Length Byte(s)
1 File type label 20 "PCIUW settig File"
2 Header_data 64 * 452
3 ActiveDevice 4 Int
4 ActivePointer 4
5 Counter 4
6 MaxCounter 4
7 ActiveSelect 4
8 ActiveFunction 64 * 4
9 ActiveBus 64 * 4
Sum 29480

DETAILED LAYOUT OF HEADER DATA
Type Name Len Start Address

Int Dev_func 4 0
Int BusNo 4 4
Int MultiFunction 4 8
Char Dummy 1 12

Alignment Bits 3 13
Unsigned int Device_Id 4 16
Unsigned int Vendor_Id 4 20
Unsigned int Command 4 24
Unsigned int Status 4 28
Char Revision_Id 1 32
Char Programming_interface 1 33
Char Sub_class 1 34
Char Base_class 1 35
Char Cache_line 1 36
Char Latency_timer 1 37
Char Header_type 1 38
Char BIST 1 39
Unsigned long Base_Address1 4 40
Unsigned long Base_Address2 4 44
Unsigned long Base_Address3 4 48
Unsigned long Base_Address4 4 52
Unsigned long Base_Address5 4 56
Unsigned long Base_Address6 4 60
Unsigned long CardBus 4 64
Unsigned int SubsystemVendorID 4 68
Unsigned int SubsystemID 4 72
Unsigned long Expansion_ROM 4 76
Unsigned long Reserve3 4 80
Unsigned long Reserve4 4 84
Char Interrupt_line 1 88
Char Interrupt_pin 1 89
Char Min_Gnt 1 90
Char Max_Lat 1 91



__int8 PrimaryBusNo 1 92
__int8 SecondaryBusNo 1 93
__int8 SubordinateBusNo 1 94
__int8 SecondaryLatTimer 1 95
__int8 IOBase 1 96
__int8 IOLimit 1 97
__int16 MEMBase 2 98
__int16 MEMLimit 2 100
__int16 PreMEMBase 2 102
__int16 PreMEMLimit 2 104
__int16 IOBaseUp16 2 106
__int16 IOLimitUp16 2 108
__int16 SecStatus 2 110
__int16 BridgeControl 2 112

Alignment Bits 2 13
__int32 Breserved 4 116
__int32 BexpRom 4 120
__int32 PreBaseUp32 4 124
__int32 PreLimitUp32 4 128
Char Extra[192] 192 * 1 132
Char CstringDriver[128] 128 * 1 324
Sum Sum of bits 452

Note:
The function ‘Dev_func” represents a complex structure for the fields for Device Number and Function,
out lined below.

dev_func = XXXXX  XXX
                   ----------   ------
                        |             |
                        |             àFunction No.
                        à Device No

If device is a multi function device, the ‘MultiFunction’ field will be set to 1 and ‘Function No’  is used to
set functions 1 to 7.


